

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/clarification/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/clarification/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

 [image: Gem Version] [https://badge.fury.io/rb/clarification]
[image: Build Status] [https://travis-ci.org/nicholalexander/clarification]
[image: Test Coverage] [https://codeclimate.com/github/nicholalexander/clarification/coverage]
[image: Code Climate] [https://codeclimate.com/github/nicholalexander/clarification]
[image: Codacy Badge] [https://www.codacy.com/app/nicholalexander/clarification?utm_source=github.com&utm_medium=referral&utm_content=nicholalexander/clarification&utm_campaign=Badge_Grade]
[image: Inline docs] [http://inch-ci.org/github/nicholalexander/clarification]

Clarification

An unofficial Ruby wrapper for the Clarifai [http://clarifai.com] API. This currently uses v2 of the API and was partially created because other Ruby gems are using v1 which is being depricated in late 2017.

Clarifai is an awesome service and hopefully this gem makes it easier to use it and to use AI image tagging in your Ruby apps. Please let me know if there’s something you’d like to see but don’t or if you see something you wish you didn’t. Thanks!

This gem is currently in development and there is lots likely to change so please be aware!

Installation

Add this line to your application’s Gemfile:

gem 'clarification'

And then execute:

$ bundle

Or install it yourself as:

$ gem install clarification

Configuration

Configure the gem as you would normally configure a wonderful happy gem.

 Clarification.configure do |config|
 config.api_key = 'a_big_secret_you_got_from_clarifai'
 config.default_public_models = [:food, :general]
 end

This should also work nicely inside a rails initializer.

Each endpoint initialized in your configuration will be called by default from the client. So any predictions using a client configured with :food and :general will make two API requests.

When Workflow [https://clarifai.com/developer/guide/workflow#workflow] is implemented in the gem, you will be able to call against your workflow instead of the public models.

You can also configure the client on the fly with client.set_active_models_by_public_key([:food, :general]), client.set_active_models_from_hash({food: 'fasldfsadflkjasdf'}) (useful for custom models) or client.set_active_models(model) where model is a Clarification::Model. See more in Training.

Basic Usage

client = Clarification::Client.new
response = client.predict.by_url(some_public_url_of_an_image)

Prediction

The response object returned from the prediction is a hash containing a nicely parsed result for each of the models called. In the above configuration example we have two models. So we will have response[:food] and response[:general] after asking for a prediction. Each of those model results have an object which has three pieces of relevant information: status, concepts, and response_json.

Thusly you can do things like this:

response[:food].concepts.each do |concept|
 if concept.value > 0.90
 puts "#{concept.name}"
 end
end

if response[:food].status.code == 10000
 puts response[:food].status.description
end

If you want the actual api response, it’s here:

response[:general].response_json

All the objects are OpenStructs currently, but I suspect this will change shortly.

As a convenience, the client also maintains the parsed response in the last_response variable.

client.predict.by_url(some_public_url_of_an_image)
client.predict.last_response #=> {:food => Objectifier...}

Search

The client has a search object which can be used to index images with the Clarifai application identified by the API key.

Thusly you can do like this:

image_array = [url_to_picture_of_kitten, url_to_picture_of_pizza, url_to_picture_of_drake]
client.search.index_images(image_array)

Once you have your images indexed, you can go and search them by concepts that might be in your pictures as identified by Clarifai’s general prediction model.

results = client.search.by_concept('cat')
results.hits.each do |hit|
 puts hit.url if hit.score > .90
end

The search client also saves the last search and searched concept as a matter of convenience.

client.search.last_search.hits.count
client.search.last_search.concept

Go and do likewise.

Train

There are three steps to setting up a custom model:

	Add images with concepts.

	Create a model with the same concepts that you’ve associated with images.

	Train said model.

These three steps can be accomplished thusly:

cat_related_concepts = ["cat", "feline", "superior"]
client.train.add_image(some_url_of_a_cat, cat_related_concepts)
model = client.train.create_model('cat', cat_related_concepts)
client.train.train_model(model)

Now that you have the model created and trained, you should be able to predict against it. Though you may need to wait for Clarifai to finish the model training.

client.set_active_models([model])
client.predict.by_url(some_public_url)

Walla, as they say in France.

TODO’s

Lots and lots of things. Amongst them:

	error handling

	predict multiple images per call

	predict video

	better testing

	documentation

	use workflows

Development

After checking out the repo, run bin/setup to install dependencies. Then, run rake spec to run the tests. You can also run bin/console for an interactive prompt that will allow you to experiment.

The repo intentionally includes an api key in bin/console to make experimenting easy and quick. If you plan on making a bunch of requests, you can easily sign up for your own free key [https://clarifai.com/signup/].

Contributing

Bug reports and pull requests are welcome on GitHub at https://github.com/nicholalexander/clarification. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the Contributor Covenant [http://contributor-covenant.org] code of conduct.

You can also see various code reporting / CI info here:travis ci [https://travis-ci.org/nicholalexander/clarification]codacy [https://www.codacy.com/app/nicholalexander/clarification]code climate [https://codeclimate.com/github/nicholalexander/clarification]

License

The gem is available as open source under the terms of the MIT License [http://opensource.org/licenses/MIT].

Code of Conduct

Everyone interacting in the Clarification project’s codebases, issue trackers, chat rooms and mailing lists is expected to follow the code of conduct [https://github.com/nicholalexander/clarification/blob/master/CODE_OF_CONDUCT.md].

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience,
nationality, personal appearance, race, religion, or sexual identity and
orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at nichol.alexander@gmail.com. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [http://contributor-covenant.org], version 1.4,
available at http://contributor-covenant.org/version/1/4 [http://contributor-covenant.org/version/1/4/]

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

